"Science" Documents

Paul McNamara Joint NLST/SST meeting Baltimore. August 2018

ESA UNCLASSIFIED - For Official Use

LISA Science Study Team

Name	Institute	
Paul McNamara	ESA-ESTEC	paul.mo
Monica Colpi	University of Milano (Italy)	Monica
Karsten Danzmann	AEI, Hannover (Germany)	karsten
Martin Hewitson	AEI, Hannover (Germany)	martin.
Jens Hjorth	University of Copenhagen (Denmark)	jens@d
Kelly Holley-Bockelmann	Vanderbilt University (USA)	<u>k.holley</u>
Philippe Jetzer	University of Zurich (Switzerland)	jetzer@
Gijs Nelemens	Radboud University (Netherlands)	nelema
Antoine Petiteau	APC, Paris (France)	petiteau
David Shoemaker	MIT (USA)	<u>dhs@m</u>
Carlos Sopouerta	IEEC, Barcelona (Spain)	sopuer
Robin Stebbins	NASA (retired)	robintst
Nial Tanvir	University of Leicester (UK)	nrt3@le
Harry Ward	University of Glasgow (UK)	<u>henry.w</u>
Bill Weber	University of Trento (Italy)	williamj
Observers		
Luigi Colangeli	ESA-ESTEC	<u>luigi.co</u>
Oliver Jennrich	ESA-ESTEC	<u>oliver.je</u>
Martin Gehler	ESA_ESTEC	<u>martin.</u>
Ira Thorpe	NASA-GSFC	James.
Rita Sambruna	NASA-HQ	<u>rita.m.s</u>
Hideyuki Tagoshi	University of Tokyo	<u>tagoshi</u>
Kiwamu Izumi	JAXA	<u>kiwamu</u>

LISA SST Terms of Reference

The Terms of Reference of the SST include:

- Provide scientific oversight in the fields associated with the science theme "The Gravitational Universe" - Review and propose updates to the mission scientific requirements
 - Writing and maintaining the Science Requirements Document (SciRD)
- Assess the scientific aspects of the mission performance
 - If any science requirement cannot be met, it is the role of the SST to advise ESA on the appropriate course of action
- Assist on making top-level trade-offs
- Assist in setting-up scientific requirements on the Science Ground Segment
 - Review of Science Operations Assumptions Document (SOAD)
- Support the preparation of the measurement plan and calibration strategy
- Advise on the preparation of the Science Management Plan (SMP)
 - Including defining the data access rights for LISA data following established ESA guidelines
- Preparing for, and overseeing, the analysis of the LISA data

<u>ii – I</u>

- Act as a focus for the interests of the broad scientific community

ESA UNCLASSIFIED - For Official Use

Joint SST/NLST | 27-29/08/2018 | Slide 3

Document Hierarchy

- The ScIRD and SMP are two of the highest level documents of any project
- The Science Requirements Document is the highest level requirements document in the mission
 - ESA will build the satellites (constellation) to allow the SciRD requirements to be met
 - All other technical requirements essentially flow down from the SciRD
- The SciRD will be updated during Phase A, so we are not (yet) locked into anything
 - However, the Mission Requirements Document (MRD) is based on the threshold sources listed in the SciRD
 - We will make necessary updates to the SciRD by the end of Phase A

ESA UNCLASSIFIED - For Official Use

SciRD Assumptions

The SciRD should be agnostic of the mission architecture

- It defines the *science* to be delivered by the L3 mission
- @ However, unlike previous versions of the LISA SciRD, we made assumptions on the mission (see next) slides)
 - e.g. we have assumed that we have 6 operational links
 - It does not make much sense not to, given that several requirements require the 6 links

signal due to choice of armlength

<u>ii - -</u>

- NB: The Mission Requirements Document (MRD) requires industry to build a mission with 10pm/vHz single link displacement noise
 - The margin is held at system level
- © Low frequency (<1mHz) strain corresponds to an equivalent single test mass acceleration noise of 3fms⁻²/ √Hz
 - Again, the MRD requires an instrument with 2.4fms⁻²/√Hz (based on LPF heritage), with margin held a system level

ESA UNCLASSIFIED - For Official Use

- We have not included the wiggles, but have required that any deviation can only come from the cancellation of GW

Joint SST/NLST | 27-29/08/2018 | Slide 5

SciRD Assumptions

The SciRD only sets requirements over the measurement bandwidth (100µHz - 0.1Hz)

- Below 100μ Hz, or above 0.1Hz are a mission goals
- is no requirement to test at frequencies lower than 100µHz

ESA UNCLASSIFIED - For Official Use

- We ask industry to avoid anything (e.g. switching heaters) which could affect the performance down to 20µHz, however, there

Joint SST/NLST | 27-29/08/2018 | Slide 6

*

System Requirements

- on the system
 - We have tried to avoid specifying implementation details
- Polarisation:
 - We have required the ability to measure both GW polarisations simultaneously
 - Therefore, we require a minimum of six links
- Oata Streams:
 - observables (e.g. TDI X, Y or Z)
 - Again, requires more than 4 working links
 - We require the null data stream (Sagnac) to allow an estimation of the low frequency instrument noise

- Again, requires the full constellation

ESA UNCLASSIFIED - For Official Use

The SciRD should only specify science requirements, however, in order to do this, we also have to levy requirements

- To allow instrumental effects to be distinguished from GW signals, we require more than one quasi-independent science

Joint SST/NLST | 27-29/08/2018 | Slide 7

System Requirements [2]

Mission lifetime

- Nominal in-orbit operational phase (IOOP) is 4 years
 - With 75% duty cycle (based on LPF heritage), leads to 3 years of science data taking
- Mission extension planning is for 6 years (i.e. sizing of consumables)
 - With 75% duty cycle, we then have an additional 4.5 years of science data
- In total we are assuming 7.5 years of science data taking out of a 12.5 year mission (launch to decommissioning) - In reality, the 75% is based on LPF - this could be higher if we can remain in science mode while repointing the antenna - However, we have to consider the 12.5 year lifetime vs 18 months of LPF

© Data Products

- We specify that all science data is 'properly filtered and sampled at adequate resolution' - We need to clarify the filters and resolution required per channel, otherwise this is open to interpretation!
- Primary science data
 - Measurement bandwidth to 0.1Hz
 - MBW goal of 1Hz
 - Thus minimum sampling rate is 2Hz, but in reality, considering filtering for TDI, we will need data sampled at >3Hz to have a useful bandwidth at 1Hz

- The sampling rate needs to be fixed asap, as it drives the C&DH and comms system

ESA UNCLASSIFIED - For Official Use

Joint SST/NLST | 27-29/08/2018 | Slide 8

*

System Requirements [3]

Protected Periods

- protected period
 - This should not be a problem, as long as we give ~2day notice to MOC
 - Only requires a re-phasing of the antenna pointing
- Do we also want to have the merger in visibility?

- We specify that it shall be possible to reschedule any planned interruption (e.g. antenna repointing) to allow for a 14-day

- If so, then this places much stricter requirements (which may not be possible) as the GS usage is scheduled ~6months in advance

Science Objectives - See SciRE

SI 1.1: Elucidate the formation and period, spatial and mass dist SI 1.2: Enable joint gravitational and the interplay between gravita stellar systems. SO 2: Trace the origin, growth and merge SI 2.1: Search for seed black holes a SI 2.2: Study the growth mechanism SI 2.3: Observation of EM counterpa merging binaries SI 2.4: Test the existence of Interme SO 3: Probe the dynamics of dense nuclea SI 3.1: Study the immediate environ SO 4: Understand the astrophysics of stell SI 4.1: Study the close environment messenger observations at the SI 4.2: Disentangle SOBH binary for SO 5: Explore the fundamental nature of SI 5.1: Use ring-down characteristic the post-merger objects are SI 5.2: Use EMRIs to explore the m SI 5.3: Testing for the presence of b SI 5.4: Test the propagation propert SI 5.5: Test the presence of massiv larger than $10^3 M_{\odot}$ SO 6: Probe the rate of expansion of the SI 6.1: Measure the dimensionless only SI 6.2: Constrain cosmological para SO 7: Understand stochastic GW backgro and TeV-scale particle physics . . SI 7.1: Characterise the astrophysica SI 7.2: Measure, or set upper limits tic GW background . . . SO 8: Search for GW bursts and unforese SI 8.1: Search for cusps and kinks o SI 8.2: Search for unmodelled source

╺╴┽╸╻╻╴╺━

ESA UNCLASSIFIED - For Official Use

SO 1: Study the formation and evolution of compact binary stars in the Milky Way Galaxy. SI 1.1: Elucidate the formation and evolution of Galactic Binaries by measuring their	18
period, spatial and mass distributions.	18
SI 1.2: Enable joint gravitational and electromagnetic observations of GBs to study	
the interplay between gravitational radiation and tidal dissipation in interacting	
stellar systems.	20
SO 2: Trace the origin, growth and merger history of massive black holes across cosmic ages	21
SI 2.1: Search for seed black holes at cosmic dawn	22
SI 2.2: Study the growth mechanism of MBHs from the epoch of the earliest quasars	24
SI 2.3: Observation of EM counterparts to unveil the astrophysical environment around	
merging binaries	26
SI 2.4: Test the existence of Intermediate Mass Black Hole Binaries (IMBHBs)	28
SO 3: Probe the dynamics of dense nuclear clusters using EMRIs	32
SI 3.1: Study the immediate environment of Milky Way like MBHs at low redshift	32
SO 4: Understand the astrophysics of stellar origin black holes	33
SI 4 1. Study the close environment of SOBHs by enabling multi-hand and multi-	55
messenger observations at the time of coalescence	33
SI 4 2: Disentangle SOBH binary formation channels	34
SO 5: Explore the fundamental nature of gravity and black holes	36
SI 5.1: Use ring-down characteristics observed in MBHB coalescences to test whether	50
the post-merger objects are the black holes predicted by GR.	36
SI 5.2: Use EMRIs to explore the multipolar structure of MBHs	39
SI 5.3: Testing for the presence of beyond-GR emission channels	40
SI 5.4: Test the propagation properties of GWs	41
SI 5.5: Test the presence of massive fields around massive black holes with masses	
larger than $10^3 M_{\odot}$	42
SO 6: Probe the rate of expansion of the Universe	43
SI 6.1: Measure the dimensionless Hubble parameter by means of GW observations	
only	43
SI 6.2: Constrain cosmological parameters through joint GW and EM observations .	44
SO 7: Understand stochastic GW backgrounds and their implications for the early Universe	
and TeV-scale particle physics	45
SI 7.1: Characterise the astrophysical stochastic GW background	45
SI 7.2: Measure, or set upper limits on, the spectral shape of the cosmological stochas-	
tic GW background	46
SO 8: Search for GW bursts and unforeseen sources	47
SI 8.1: Search for cusps and kinks of cosmic strings	47
SI 8.2: Search for unmodelled sources	48

+

Joint SST/NLST | 27-29/08/2018 | Slide 10

*

European Space Agency

Sensitivity curve and Mission Requirements

Joint SST/NLST | 27-29/08/2018 | Slide 11

*

SNR Calculations

- C Antoine, Martin and Stas have put together a document describing the calculations of the SNR as quoted in the scared
- If you haven't done so, please review and provide feedback
 - This analysis will underpin the observer tools which will be made available

ESA UNCLASSIFIED - For Official Use

Laser Interferometer Space Antenna

Date : 2018/07/05

LISA Science Performance and SNR Calculations

N/Ref :	LISA-LCST-SGS-TN-001
Title	LISA Science Performance and SNR Calculations
Abstract	A technical note justifying the science performance calculations for LISA, in particular computation of Signal-to-Noise Ratios.

	Name	Date	Signature
Prepared by	LISA team	2018/07/05	
Checked by			
Checked by (QA)		
Approved by			

This document is the property of the LSA Consortium and cannot be reproduced or distributed without its authorization

*

+

Joint SST/NLST | 27-29/08/2018 | Slide 12

Science Operations Assumptions Document (SOAD)

The SOAD is written by the Science Operations Systems Lead (SOSL)

- Uwe Lammers based at ESAC
- The SOAD focusses primarily on the activities of the Science Operations Centre (SOC)
 - Also identifies the interfaces to the science community (in our case the DPC)
- The SOAD is used to provide the first estimate the cost of the science ground segment

It defines:

- Data Products (Level 0 Level 3)
- Ground Segment elements (MOC, SOC, DPC)
- Description of the mission phases
- Short description of the mission operation responsibilities (MOC)
- Short description of the science operations responsibilities (SOC)
- Short description of the DPC responsibilities
- Science archive requirements
- High level interface definition between all parties
- Detailed description of the SOC tasks per mission phase

ESA UNCLASSIFIED - For Official Use

Table of contents:

+

1 INTR	ODUCTION	
1.1 P	URPOSE	
1.2 A	PPLICABLE DOCUMENTS	
1.3 R	EFERENCE DOCUMENTS	
1.4 A	CRONYMS	
2 MISS	ION OVERVIEW	
2.1 S	CIENCE OBJECTIVES	(
2.2 P	AYLOAD AND PLATFORM	
2.3 N	ISSION ANALYSIS	
2.4 G	ROUND SEGMENT	1
2.5 N	ISSION IMPLEMENTATION	12
2.5.1	Mission phases	Ľ
3 MISS	ION OPERATIONS	1
5 11100		
4 SCIE	NCE OPERATIONS	1
41 \$	CHENCE ODED ATIONS TO EMENTS	1/
4.1.1	Science Operations Centre	1
41	Science Planning Team	r
4.1.	1.2 Data Processing Team	.1
4.1.	13 Archive	.1
4.1.	1.4 User Support	.1
4.1.	1.5 Other SOC activities	.1
4.1.2	Instrument Operations Teams	2
4.1.3	Data Processing Centre	2
4.2 S	OC ACTIVITIES PER MISSION PHASE	2
4.2.1	Definition Phase	.2
4.2.2	Development Phase	.2
4.2.3	Launch & Early Orbit Phase	.2
4.2.4	Cruise Phase	.2.
42.5	Commissioning Phase	2
4.2.6	Calibration phase	2
42.7	Science Operations Phase	2
42.8	Post-operations Phase	2

*

Joint SST/NLST | 27-29/08/2018 | Slide 13

SOAD schedule

Several SOADs have been written in the past for LISA - Both for old-LISA and NGO These versions are being updated for the current LISA - First draft exists, but is in a very rough form A first meeting between the SOSL, PS and DPC was held in July
A first meeting between the SOSL, PS and DPC was held in July
A first meeting between the SOSL, PS and DPC was held in July
A first meeting between the SOSL, PS and DPC was held in July
A first meeting between the SOSL, PS and DPC was held in July
A first meeting between the SOSL, PS and DPC was held in July
A first meeting between the SOSL, PS and DPC was held in July
A first meeting between the SOSL, PS and DPC was held in July
A first meeting between the SOSL, PS and DPC was held in July
A first meeting between the SOSL, PS and DPC was held in July - Uwe will now update the SOAD with the inputs from this meeting - Next draft is scheduled for Autumn 2018

The costing will be worked with the ESA study office as part of the mission costing exercise

ESA UNCLASSIFIED - For Official Use

Joint SST/NLST | 27-29/08/2018 | Slide 14

Science Management Plan (SMP)

- The LISA Science Management Plan (SMP) defines the top-level management scheme which will be used to achieve the scientific objectives of the LISA mission up to, and including, the post operations phase.
 - Unlike the other top-level documents, the SMP requires approval by the ESA advisory structure, including the Science Programme Committee (SPC)
- The SMP defines the roles and responsibilities of all parties involved in science exploitation, including ESA, the LISA Consortium and the science community at large
 - The SMP provides input to the Multi-Lateral Agreement (MLA) between ESA and the National Agencies. The MLA supercedes the SMP in relation to the payload provision
- The SMP will be presented to the SPC before adoption (end of Phase B1)

ESA UNCLASSIFIED - For Official Use

As concerns the Science Teams

The important aspects of the SMP related to the science teams are:

- Definition of data products
 - Already defined in the SOAD
- Data rights, in particular any proprietary period will be defined in the SMP (and approved by SPC) - This will likely be the most contentious topic in the SMP
- - ESA have been burned in the past with access to data...
- Delivery schedule of data from satellite to DPC
 - Again this will have been defined in the SOAD and SGS documents
 - However, in other (PI) missions this may not be the case
- Public outreach
- Requirements on ground/space based follow-up observations

- Not required for LISA

ESA UNCLASSIFIED - For Official Use

Joint SST/NLST | 27-29/08/2018 | Slide 16

SMP schedule

SMP is written by the Project Scientist with input from:

- Science Study Team
 - NLST
- ESA Study Manager (Martin)
- Science Operations System Lead (Uwe)
- Consortium Board
- ESA Executive
- First draft written during Phase B1 (mid-2020)
 - First release by end B1

Approval by ESA advisory Structure (around time of adoption)

- AWG
- SSAC
- SPC
- Changes to the SMP are not advised, as any change must go through the full approval cycle!

- This can take more than one year (e.g. Plato SMP)

ESA UNCLASSIFIED - For Official Use

1 Int	raduction
	roduction
2 Pay	yload
3 Th	e Project Team
4 Sci	entific Operations
4.1	Introduction
4.2	Architecture
4.3	The Mission Operations Center
4.4	The Project Scientist
4.5	The LISA Pathfinder Science Working Team
4.6	Role of the LTP Team in Operations and Data Analysis
4.7	LPF Science and Technology Operations Centre
4.8	LTP Management Office
5 Da	ta Products 1
5.1	Calibrated Telemetry 1
5.1	.1 Delivery Schedule of Calibrated Telemetry 1
5.2	Science and Technology Data Products
5.2	.1 Delivery Schedule for Science and Technology Data Products
5.3	Scientific Publication Policy
5.4	Public Relations Plan
6 Ac	ronyms1

*

esa_

+

_ ## .

Joint SST/NLST | 27-29/08/2018 | Slide 17

Yellow Book....

Yes....we need another Yellow Book by the end of Phase A

LISA

Laser Interferometer Space Antenna for the detection and observation of gravitational waves

A Cornerstone Project in ESA's long term space science programme "Horizon 2000 Plus"

Pre-Phase A Report December 1995

MPQ 208

February 1996

Laser Interferometer Space Antenna for the detection and observation of gravitational waves

Pre-Phase A Report Second Edition July 1998

MPQ 233

ESA UNCLASSIFIED - For Official Use

LISA

An international project in the field of Fundamental Physics in Space

July 1998

ESA/SRE(2011)19 December 2011

NGO

Revealing a hidden Universe: opening a new chapter of discovery

Assessment Study Report

European Space Agency

*

Joint SST/NLST | 27-29/08/2018 | Slide 18

Conclusions

The SciRD is available for comment

- If you do not have a copy, please let me know
 - The document is also available via the ESA LISA web pages
- Comments are always welcome
- There are still many TBD/TBCs which will be removed before end Phase A

The definition of the Science Ground Segment is underway - First release of the SOAD in Autumn

The SMP is a crucial document for the mission

- The first draft will be released after Phase A
 - Scheduled for mid-2020

ESA UNCLASSIFIED - For Official Use

Joint SST/NLST | 27-29/08/2018 | Slide 19

*

+

